Paratox 9

jPdox™ Web Utilities User Guide

Copyright © 1999 COREL CORPORATION and COREL
CORPORATION LIMITED. All rights reserved.

For more complete copyright information please refer to the About
section in the Help menu of the software.

TABLE OF CONTENTS

Chapter |

Chapter 2

Chapter 3
Chapter 4

Chapter 5

Chapter 6

Chapter 7

jPdox Web Utilities
Introduction .

jPdox Web Utilities setup

Technical Support and Services

jPdox Web Utilities
jPdox Web Utilities setup .
Step One: Introduction .

Step Two: License Agreement.

Step Three: Choose Install Folder .

Step Four: Choose Shortcut Location .
Step Five: Choose Java Virtual Machine
Step Six: Choose Install Set .

Step Seven: Installing .

Step Eight: Install Complete .
Paradox Web Form Designer
Paradox JDBC Driver

How the Paradox |DBC Driver works .

Configuring the Paradox |DBC Server.

Using the Paradox |DBC Driver in Java applications.

Paradox Report Server

Dynamic HTML documents .

Paradox Report Server and JRun
Setting up the Paradox Report Server
Configuring your default port .

Two-tier Web Solution .

Testing the two-tier Web solution .
Three-tier Web Solution

Testing the three-tier Web solution
JDBC Proxy Server
Configuring the |DBC Proxy Server .

Table of contents

O o© —w on 1T B R W W N — — e

Chapter 8 How the Utilities Work Together

Case I: Enterprise.
(ase 2: Small Business
(ase 3: Customer Service .

Case 4: Advanced Java Developer

Appendix A: Unsupported JDBC Class methods
Appendix B: Example of Paradox JDBC Client Class

o
1

Table of contents

29
29
30
30
31

33

37

Introduction

Retrieving data and publishing it over the Internet or an intranet is becoming
increasingly important for enterprise markets. As the popularity of the
internet increases, and as users become accustomed to retrieving
information using Web browsers, many organizations are switching from
document-based Web sites to database-based Web sites.

The new advanced features of Paradox® 9 provide an Internet or intranet
solution, allowing users to design and publish forms, tables, and reports to
intranets or to the Internet.

jPdox Web Utilities setup

The Setup Expert, created with InstallAnywhere, is a Java application which
installs the jPdox™ Web Utilities. For information on each step of the Setup
Expert, see “jPdox Web Utilities setup” on page 3.

Technical Support and Services

For information about Corel Support and Services, refer to the Corel Support
and Services help file located on the Paradox 9 or WordPerfect® Office 2000
CD in the following folder: Corel\Paradox\Techsupp.hlp.

jPdox Web Utilities

jPdox Web Utilities

Paradox offers the following components, which together constitute jPdox
Web Utilities:

Paradox® Web Form Designer—Ilets you create forms by using
embedded JavaBeans without writing code. Java applets embedded in
HTML files help you create platform-independent Web forms. You can
share current data from a Web site that is associated with any
Paradox-compliant database or any database which has a JDBC Driver.
For more information, see page 9.

Corel® Web Server— a fully functional Web server. It offers HTTP
support (version 1.0 plus many 1.1 elements), file caching, contact
(access) logging using the CERN/NCSA Common Log Format plus
transaction logging, custom MIME types, and support for multiple
IntraBuilder sessions (multithreaded). The Corel Web Server acts as
an intermediary between Web browsers and compatible applications,
such as IntraBuilder and Paradox, to transfer requests and responses
between them. For more information, see the Corel Web Server online
Help.

Paradox® Java Database Connectivity (JDBC) Driver—gives you
standard Structured Query Language (SQL) access to databases from
Java programs, including the Web Form Designer. The Paradox JDBC
Driver provides you with a direct connection to the Borland Database
Engine (BDE), which provides access to most desktop- and
server-based databases from Java programs. For more information, see
page 11.

Paradox® Report Server—lets you create dynamic HTML documents
using the HTML Table Expert or the HTML Report Expert. This
feature is compliant with standard Web servers that support Java
servlets, such as JRun. As the data in a database changes, the
information on the Web page updates to reflect the changes. You can
also publish static HTML documents that are fixed and unchanging.
For more information, see page 15.

JRun—allows your Web server to be 100% servlet API-compatible and
to run Java servlets. JRun is a combination of native code to interface
directly to your Web server in the fastest way possible, as well as a
collection of Java classes that provides the interface layer between
your server and the servlets that you run. (JRun is only included in the
Paradox 9 Developer’s Edition). For more information, see page 17.

JDBC Proxy Server—redirects all incoming and outgoing information
between the JDBC Client and the JDBC Server; it acts as a security
barrier. For more information, see page 25.

2 jPdox Web Utilities: Chapter |

uwell"

The Setup Expert, created with InstallAnywhere, is a Java application which
installs the jPdox™ Web Utilities. The following section provides a brief
description of the steps of the installation.

Step One: Introduction

The first step provides a brief introduction to the jPdox Web Utilities
installation.

¢ (lick next to continue.

Iniraducizm

Wl e o il 0 B T
[Ci R AR R]

Limn e Tieal" bollon o prarssd o e el
areen Fyou e b deegs samerhng ns
Err I e, C ok B Preveceus” e T
o st B e @ e e iy i Biking B
“Enl lin

o] Ciwe |

jPdox Web Utilities setup 3

Step Two: License Agreement

This is the end-user license. You must agree to this before continuing.
I Click Yes to accept the terms of the license.

2 Click Next to continue.

L "
e e i e L LB

AT TER TN THE R B LICEREE Mo R B E THEPRoiCT B il
FRODED UMCER THE FOLLOSIME UICEREE AOREEWET ARD S

P FLICEE L A W VRS LI EHEET] 00 H DR T VTR Y O
PYATH THE PRODLCT SMD © ORI LTINS CF s T o
PO E STSETIE . T-EG LODHIE 1 OSAHTED D Tl

DOAR DEATEOH LIMTR D FOR PFRODLCTE FUATEEEED CUTSIOE OF
CiED ARl B C DRRL CORR DRA TG FOR FRODLETS FLUALHEEED R
Db Telll LICFHER IHCLLIDES THE Fl Ovedbise

I SERERRL LK EREE A3REERENT

=
L v e v B e ol e ™
" en W M

e | Pwens| |

Step Three: Choose Install Folder

This screen allows you to choose where the program will be installed. The
default folder is C:\Program Files\Corel\jPdox.

I Type in the path of where you want to install jPdox Web Utilities, or click
the Choose button to select a folder.

You can also click the Restore Default Location button to restore the
default.

2 Click Next to continue.

Choare lasiall Faller
i i el v i e it nad B

IO F R 0

Respiors Detwan i aiaiion | Cuacne ||

| | l"lllﬂl.rill i_'ri-i"l

jPdox Web Utilities: Chapter 2

Step Four: Choose Shortcut Location
This screen allows you to choose a program group. The default is jPdox.
I Enable the option for where you would like the application icons created.

2 Click Next to continue.

Chovase Shariru [oewson
L Ll s ppliami
& i e g T | s
s ey pogreT e | H
i Wi
& On e Deskdcp
T owac | [j
™ Ceal oers nhwrksnca

Step Five: Choose Java Virtual Machine

This screen allows you to choose which Java Virtual Machine (JVM) will run
your applications. If you already have the JRE 1.2 or JDK 1.2 (or later)
installed, you can choose to select a JVM already installed on your machine.

It is important that you select a JVM with a version of 1.2 or higher, if you are
unsure of which version of JVM you have installed, choose to install the
JavaSoft JRE specifically for this application (the default option).

I Enable one of the following options:
 Install JavaSoft JRE specifically for this application.
e Choose a virtual machine already installed on this machine.

If you select to install a JVM already installed on your system, you can
click the Search button, which will search your hard drive for all JDK or
JRE virtual machines.

jPdox Web Utilities setup 5

2 Click Next to continue.

Choars Jova Viciesl Msclers
Pl bt i Jirn W i i o i

e detol E el s i Brn oo peon

I L T iy L] ' P T

Casrk | Chowa n Saolve
] | rﬂ-m| [He I

Step Six: Choose Install Set
This screen lets you choose the components you wish to install.
I Select one of the following install options:

e Full Install—installs the Web Form Designer, the server programs, and
the JDBC Driver.

e Web Form Designer—installs only the Web Form Designer (if you only
want to create blank forms without connecting to a database).

¢ Server Components—only installs the server utilities and drivers
which allow previously created forms to connect to a database.

2 Click Customize if you wish an alternate combination of the install
components.

6 jPdox Web Utilities: Chapter 2

3 Click Next to continue.

Chargar [nssall S
. Fuall bvwemt.
Fun e Bm P e e B g ard o St
Vel Form Desigrer
- iy
B iy i i
ar T g o
Jumiorsn |
—ta | e | [T

Step Seven: Installing

The next screen informs you that the selected jPdox Web Ultilities are being
installed.

e Click Exit if you wish to end the install.

jPdox Web Utilities setup 7

Step Eight: Install Complete
The last screen informs you that the install is complete.

e Click Done to complete the installation process.

Intall Compleis

Tha installation of Pdox s now complale. Click
Done bo oxfl ihe installation. You ane now neady bo

st Using P,

8 jPdox Web Utilities: Chapter 2

The Paradox Web Form Designer is a new feature designed for Paradox 9.
You can design Java-based Web forms to access databases on a network or
the Internet. You can also design and create forms using Paradox 9, and
publish them directly to the Internet or an intranet.

The Paradox Web Form Designer makes it easy to design and create Web
forms from a Paradox 9 database. The design objects used to build the Web
forms are based on predesigned JavaBeans. Java Applets are embedded in an
HTML page to create forms. To create a form, you select and drop JavaBeans
by dragging and dropping. The form is also WYSIWYG, so you do not need to
preview your work in a Web browser before you publish. Once you have
placed the JavaBeans in the Web form, you can Publish to HTML. The
necessary files are copied to the local drive and a Web server. The new form
is then displayed when the Web page is accessed.

¢ For more information on how to use Paradox Web Form Designer, see the
Paradox Web Form Designer online Help.

Paradox Web Form Designer 9

Java Database Connectivity (JDBC) is an industry standard for
database-independent connectivity between the Java platform and databases.
The Paradox JDBC Driver is a developer tool used to connect databases. It
provides a direct link between Java programs and the Borland Database
Engine (BDE), which unifies database access across multiple platforms
(Paradox 9 and the Paradox Web Form Designer come equipped with BDE
5.01).

The JDBC Driver is actually two parts: the JDBC Client and the JDBC
Server. The Client consists of the Java files (PdxJDBC.jar) that need to be
included in a Java application. The JDBC Server is the direct link to the BDE.
The Client communicates transparently with the JDBC Server to transfer the
data between the BDE and the Java application. Together, these two parts
function as the JDBC Driver.

33.

How the Paradox JDBC Driver works

The JDBC Driver uses standard Structured Query Language (SQL) to
provide Java developers with a consistent interface to desktop- and
server-based databases. The Paradox JDBC Driver provides a direct link
from a Java application to the BDE. A developer can use an existing alias,
which is the name Paradox uses to identify different databases. This makes it

Paradox JDBC Driver Il

possible for Paradox applications to be used concurrently with a Java
application, such as the Paradox Web Form Designer.

Also, the Paradox JDBC Driver supports any database that the BDE
supports, from dBASE and Microsoft Access tables to database servers such
as Oracle and the Microsoft SQL Server.

¢ The Microsoft Access driver with the BDE uses DAO (Data Access
Objects). Since DAO is not threadsafe, using the Microsoft Access driver
with the JDBC server can create problems. However, Microsoft Access
database can be accessed using the ODBC driver.

Configuring the Paradox JDBC Server

When connecting to a database using the Paradox JDBC Server, you may
want to use different settings than those defined in the Paradox JDBC Server
properties file, appsrv.properties. By editing the properties file, you can
configure the setup of the Paradox JDBC Server specific to your setup
requirements (editing parameters such as the Session Manager, registry
ports, lease time, default logging, and log file path.)

The appsrv.properties file is located in the following directory:

root directory\WebUltilities\appsrv\appsrv.properties

Session Manager

A Session Manager object is created by the Paradox JDBC Server; the JDBC
client layer hooks up to the server using this object. JDBC URLs used for
opening connections would refer to a Session Manager object; by default it is
named as SessionMgr.

Port Information

The Paradox JDBC Server uses the RMI (Remote Method Invocation)
registry service, which listens on port 1099 by default. If there is a RMI
registry already running, the Paradox JDBC Server will try to use it;
otherwise, it will try to create a local registry. If the RMI registry is listening
on a port other than the default, the port on which the RMI registry would
listen would have to be made known to Paradox JDBC Server using the
configuration settings.

The Paradox JDBC Server also listens on two other TCP ports (default
values are 1100 and 1101). These can also be configured.

jPdox Web Utilities: Chapter 4

Lease Time

The Paradox JDBC Server uses a framework of objects that are accessed
from the JDBC client layer. As long as the JDBC Client holds references to
these objects, the objects at the server stay alive. A lease time attribute is
associated with the server objects, which is renewed as long as the client
layer uses these objects. If there is an abnormal shutdown of the client, the
lease period expires and the server objects become defunct. This default
lease time is 10 minutes and can be configured.

Log File

The log file configuration simply tells the Paradox JDBC Server where the
log file is located. When you configure the log file path, you must enter all
backslashes as "\".

The following is an example of the properties file (appsrv.properties) used by

the Paradox JDBC Server for configuration:

Name of the SessionMgr Object
com.corel.pdx.appserver.SessionMgrName=SessionMgr

Registry port for the Local Registry
com.corel.pdx.appserver.RegPort=1099

ports used by AppServer objects

if set to 0, will take next available port
default value for AppSrvPortl = 1100
default value for AppSrvPort2 = 1101
com.corel.pdx.appserver.AppSrvPort1=1100
com.corel.pdx.appserver.AppSrvPort2=1101

Lease time used by AppServer Objects(in minutes)
default value = 10 minutes
com.corel.pdx.appserver.Lease=10

Enable/disable Logging.
Com.corel.pdx.appserver.LogCalls=[true|false]
com.corel.pdx.appserver.LogCalls=true

Log file path.

Note: all backslashes should be put as '\
com.corel.pdx.appserver.LogFile=.\\event.log

Paradox JDBC Driver

13

Using the Paradox JDBC Driver in Java applications

If you want to use the Paradox JDBC Driver as your connection between the
Borland Database Engine and your Java application, you must do two things.
First, you must include the path to the driver package (PdxJDBC.jar) in your
Classpath. And second, you must include the following in your application
source code:

e an import line which imports the JDBC classes into your application
e a Class.forName statement which loads the JDBC Driver Java class

* the JDBC URL string for the database to which you are connecting

Import line

e import com.corel.pdx.driver.*

Class.forName statement

¢ (lass.forName(“com.corel.pdx.driver.PdxJDBCDriver”)

JDBC URL string

* jdbc:bdea://MachineName/ParadoxDatabaseAlias; SM =SessionManagerNa
me;RemoteDbUser=ParadoxRemoteUser;PwdList=ParadoxTableCommaS
eparatedPasswordList

e All parameters except Machine Name, Paradox Database Alias, and
Session Manager are optional, depending on your circumstances, and can
be specified in any order.

e If you chose a different RMI registry port than the default (1099), the
syntax for MachineName would be MachineName/:port].

¢ Everything in italics is user specific.

For an example of a class and how the above compenents are implemented,
see Appendix A, Class Example of Paradox JDBC Driver, on page 37.

jPdox Web Utilities: Chapter 4

Paradox 9 lets you take database information from tables and reports and
publish them to the Internet or an intranet. In Paradox 8, you could create
static and dynamic HTML documents for a Web page. Publishing a static
HTML document creates a snapshot of a Paradox table or report for use on
the Internet. Publishing a dynamic HTML document uses the Corel Web
Server, and creates an HTML document where the data is dynamically
updated each time the HTML document is loaded on the Web browser.
However, you can only publish dynamically to a Windows platform.

You can still publishing static and dynamic HTML documents in Paradox 9.
The new feature of Paradox 9 is the capability to publish a dynamic HTML
document to any platform using Paradox Report Server. To publish
dynamically using the Paradox Report Server, your Web server must support
the Java Servlet API (such as JRun), and you must configure it to run the
Paradox Report Server.

The Report Server uses the properties file reportsrv.properties to read the
RMI registry port. The default registry port is 1099. If you are already using
this port, or wish to change the default port, you will have to edit the
properties file and your servlet runner administration. You can find
reportsrv.properties in the default path:

e (C:\Program Files\Corel\jPdox\dynpub\reportsrv.properties

Paradox Report Server 15

¢ For more information on using a Java Servlet (such as JRun) and
configuring it to support the Paradox Report Server, see Paradox Report
Server and JRun, on page 17.

Dynamic HTML documents

A dynamic Web document is updated each time an HTML table or report
created from a Paradox database is accessed. Dynamic HTML documents
always contain the most up-to-date information available from the database.

Dynamic HTML documents are created in Paradox with the help of the
HTML Table Expert or HTML Report Expert, which create table and report
templates. The templates are published to a Web page. Each time the
dynamic Web page is accessed, the current data is retrieved from the Paradox
database and published to the page.

The Expert converts Paradox reports and tables to an HTML text file so that
you can publish the information on the Internet or an intranet. The Expert
automatically inserts appropriate HTML tags and parameters. You can
modify the published table in the dynamic HTML document the same way
that would in any other HTML document.

jPdox Web Utilities: Chapter 5

!..‘.l_-'_,-l h:
e

Utilities

Paradox Report Server and
JRun

Paradox 9 includes a Java application known as the Paradox Report Server.
When this servlet is integrated with JRun, or with any servlet runner, it
responds to requests for documents dynamically created in Paradox (using
the HTML Table Expert or the HTML Report Expert and specifying the
Paradox Report Server publishing option).

JRun is a Java based program that allows your Web server to be 100% servlet
API-compatible and to run Java servlets. JRun extends your current Web
server to include server-side Java functionality, or you can use JRun's built-in
Web server.

¢ Only Paradox 9 Developer’s Edition includes JRun. For more information
about JRun, visit http:/www.livesoftware.com.

JRun itself does not work directly with Paradox. It manages and uses the
servlet to communicate with Paradox Report Server, which in turn
communicates with the database. JRun should be set up to function in
conjunction with your current Web server, or with JRun's own built in Web
server. If you have not installed JRun and are using another servlet runner,
you need to set it up to function with Paradox Report Server.

Paradox Report Server and JRun 17

Setting

¢ You cannot use the Corel Web Server or the Corel Web Server .OCX
control (an Active-X control shipped with Paradox) with JRun. You must
use a Web server that supports the Java Servlet API and is configured to
run the Paradox Report Server.

The Paradox Report server uses the properties file reportsrv.properties to
read the RMI registry port. If you are already using this port, or wish to
change the default port, you will have to edit the properties file. As well,
when you are configuring your servlet runner (JRun), you will also have to
add a parameter that tells the Report Servlet which port to use.

up the Paradox Report Server

Depending on how you want to use the Paradox Report Server and your
servlet runner (JRun or other), you must configure the servlet runner so that
the two applications work together. Following are two examples of when you
would have to customize the servlet runner administration and how you
would do it. These examples discuss how to modify JRun administration—if
you are using another servlet runner, you will have to modify it similarly.

Configuring your default port

If you are going to accept the default port (1099), you do not need to add this
parameter to your Servlet Administration. This procedure explains how to
configure the default port if you are using JRun as your Report Servlet.

To configure the Report Servlet

I Click Start, Programs, JRun, Administration.
On the JRun Service Manager tab, select jsm.default and click Configure.
Click the Services tab.

2
3
4 In the Service ID column, select jse and click Service Config.
5 Click the Alias tab.

6

In the Name column, select ReportServlet and double-click the Init
Arguments field.

In the Init Args Editor dialog box, click Add.

~

8 In the Name column, enter the following:

com.corel.pdx.reportserver.RegistryPort

jPdox Web Utilities: Chapter 6

9 In the value column, enter the value set in the Report Server’s property
file (the port).

10 Click OK.
Il Click Save and click OK to close the Information dialog box.

Two-tier Web Solution

In a two-tier Web solution, you have two systems: a client machine with a
Web browser installed, and a server machine with Paradox (and the Borland
Database Engine), JRun, and a Web server installed.

First, you will need to locate the dynpub.jar file (usually in the default
directory under \Corel\Paradox\dynpub\dynpub.jar). The file dynpub.jar is a
Java archive file containing the class files which make up the Paradox Report
Servlet. You must tell JRun where to find the file using the Java Classpath.

To edit the JRun Administration
I On the Server machine, click Start, Programs, JRun, Administration.

2 On the JRun Service Manager tab, select jsm.default and click Configure.

To set the JRun Service Manager default configurations
I Click the General Tab and then click the Java Tab.

2 Inthe Arguments box, add the following path to the end of the arguments
list (the default directory may change depending on where the dynpub.jar
file is installed):

e ;c:\Progra~1\Core\WebUti~1\run\dynpub.jar

You must enter the eight character DOS equivalent for the directory
names.

3 Click Save and click OK to close the Information dialog box.

To set the JRun Service Manager service configurations
I Click the Services tab.

2 In the Service ID column, select jse and click Service Config.
3 Click the Aliases tab.

4 Click Add to add a new alias.

5 Double-click in the Name column and type in ReportServlet.
6

Double-click in the Class column and type the following class
(case-sensitive):

Paradox Report Server and JRun 19

e com.corel.pdx.reportservlet.ReportServlet
7 Click Save and click OK to close the Information dialog box.

8 Click Close to close the Service Config dialog box, click Close to close the
jsm-default dialog box, and click Close again to close the JRun
Administrator dialog box.

¢ Once JRun is configured to load the Paradox Report Servlet (for example,
an alias and base path are set), you will need to modify some of the
Windows registry settings on the machine where the Paradox documents
are to be published (the server machine).

Testing the two-tier Web solution

On the server machine, ensure that your Web server and JRun (or your own
servlet runner) are correctly set up and running. You can run a test that will
tell you if the Web server, the Paradox Report Server, and the servlet runner
are functioning. The first test provides an example from one of JRun’s
supplied examples (which are installed when you install JRun). If you do not
have JRun, go to example two.

The second test shows you how to launch a dynamic report or table created
in Paradox stored in your Paradox Web Repository (you need to first create
the report or table in Paradox and publish it to HTML using the HTML
Report Expert or HTML Table Expert).

Before you attempt the test, make sure the Web server, Paradox Report
Server, and servlet runner are all running (for example, in Windows you need
to launch these from the Start menu, or in Windows NT the servlet runner
may be launched as a service).

e If you are using JRun as your servlet runner, you can run the first
example. If you are using another servlet runner, you cannot run the first
example, but you can still run the second example.

20

Example One: JRun example
I On the client machine, launch your Web Browser.

2 In the Location box, type in the following URL (italics indicate user
specific information):

* http://machine name/servlet/SnoopServlet

jPdox Web Utilities: Chapter 6

3 Press Enter.

Example Two: Database
I On the client machine, launch your Web Browser.

2 In the Location box, type the following path (italics indicate user specific
information):

* http://machine name/servlet/ReportServlet?machine name? HTML page
name

The HTML page name indicates the one that is saved in the Paradox Web
Repository.

In each example, if you have the Paradox Report Server window open on the
server machine, you will notice the requests processing.

Three-tier Web Solution

In a three-tier Web solution, you have three systems: a client computer with
a Web browser installed, a Web server machine with a Web server and JRun
installed, and a database machine with Paradox (and the Borland Database
Engine) installed.

As in the two-tier Web solution, you must locate the dynpub.jar file. A copy of
this file will need to be placed on the Web server machine. The file can be
placed in any directory; however, you must tell JRun where to find the file.
The only difference between the two-tier and three-tier Web solutions is the
placement of the dynpub.jar file. In the two-tier Web solution the dynpub.jar
file is only on the server machine. In a three-tier Web solution, the
dynpub.jar file must be on both the Web server machine and the database
machine.

To edit the JRun Administration
I On the server machine, click Start, Programs, JRun, Administration.

2 On the JRun Service Manager tab, select jsm.default and click Configure.

To set the JRun Service Manager default configurations
I Click the General Tab and then click the Java Tab.

2 Inthe Arguments box, add the path of where the dynpub.jar file is located
on the Web server machine.

You must enter the eight character DOS equivalent for the directory
names.

3 Click Save and click OK to close the Information dialog box.

Paradox Report Server and JRun 21

To set the JRun Service Manager service configurations
I Click the Services tab.

2 In the Service ID column, select jse and click Service Config.
3 Click the Aliases tab.

4 Click Add to add a new alias.

5 Double-click in the Name column and type in ReportServlet.
6

Double-click in the Class column and type the following class
(case-sensitive):

* com.corel.pdx.reportservlet.ReportServlet
7 Click Save and click OK to close the Information dialog box.

8 Click Close to close the Service Config dialog box, click Close to close the
jsm-default dialog box, and click Close again to close the JRun
Administrator dialog box.

Testing the three-tier Web solution

Before you attempt the test, make sure the Web server, Paradox Report
Server, and servlet runner are all running on their respective machines (for
example, in Windows you need to launch these from the Start menu, or in
Windows NT they may be launched as a service).

For this test, you will specify a URL in the Web Browser on the client
machine which corresponds to a dynamic HTML page you had previously
published on the database machine (make sure you have a report or table
available in your Paradox Web Repository).

Example
I On the client machine, launch your Web Browser.

2 In the Location box, type the following URL (italics indicate user specific
information):

* http://Web server machine name /servlet/ReportServlet?database
machine name?html page name

jPdox Web Utilities: Chapter 6

The previous path is dependent on the settings that you defined in the JRun
Administration. The actual format that you type into the Location box is as
follows:

o http://Web server machine name/servlet base path/servlet alias?database
machine name?html page name

-
.@K\‘ ¢ For more information on setting up JRun to function with a Web server,
see the JRun documentation (at http:/www.livesoftware.com).

Paradox Report Server and JRun 23

The JDBC Proxy Server is a Java application that redirects all incoming and
outgoing information between the JDBC Client and the JDBC Server. It can
be used as a security barrier, which is often an integral part of security
enforcement in corporate firewalls within intranet setups. The JDBC Server
can be configured to use specific ports. It could be exposed to the clients
directly if the network server was configured to allow traffic on those fixed
ports. For added security, the JDBC Proxy Server acts as a monitor between
the network server and the JDBC Server, therefore not exposing the JDBC
Server, and consequently the database information, to the outside world.

When a client opens a form or report that was dynamically published to
HTML (using the HTML Report Expert or the HTML Table Expert in
Paradox), the request for database information transparently passes through
the JDBC Proxy Server on the Web server machine and is redirected to the
JDBC Driver on the database machine (working in a three-tier configuration).

Configuring the JDBC Proxy Server

If you use the JDBC Proxy Server, you need to configure its properties file so
that it knows the SessionMgr Name and the ports used by the Paradox JDBC
server for which it is proxying.

You must set the following entries:
¢ SessionMgrName: the same as that set for the Paradox JDBC Server

com.corel.pdx.appserver.SessionMgrName

JDBC Proxy Server 25

26

e ServerHost: the hostname where the Paradox JDBC Server is running. If
the RMI registry on the JDBC Server host is run on a port other than the
default port (which is 1099), this entry should be set to
hostname:RMIRegistryPort.

com.corel.pdx.appserver.ServerHost

e AppServPort2: the same as that set for AppSrvPort2 for the Paradox
JDBC server.

com.corel.pdx.appserver.AppSrvPort2

The JDBC Proxy Server presents itself as the JDBC Server to the client. You
can configure the JDBC Proxy Server to use a different SessionMgr object
name and ports from what the JDBC Server is using (for example, ports and
name of the SessionMgr Object to be used by the Proxy Server which will
determine how clients contact the Proxy Server would need to be
configured). You may change the following entries:

¢ SessionMgrName: the JDBC URL at the client would refer to this
SessionMgr Object.

com.corel.pdx.appserverprx.SessionMgrName
¢ Registry Port: used by the Proxy server
com.corel.pdx.appserverprx.RegPort

¢ Ports used by the JDBC Proxy server (values may be different than those
used by the JDBC server)

com.corel.pdx.appserverprx.AppSrvPort1
com.corel.pdx.appserverprx.AppSrvPort2

The following is an example of the appsrvprx.properties file used by the
Proxy Server for configuration. (App Server = Paradox JDBC Server)

#Ht
Details about the App Server
#Ht

Name of the SessionMgr Object residing in
the AppServer.
Com.corel.pdx.appserver.SessionMgrName=SessionMgr

HostName for the AppServer.
Format= hostname[:RMIRegistryPort]
com.corel.pdx.appserver.ServerHost=vinayw_x2

Ports Used
port used by AppServer proxy objects

jPdox Web Utilities: Chapter 7

default value = 1101
com.corel.pdx.appserver.AppSrvPort2=1101

#it
Proxy Server Configuration
#it

Enable/disable Logging for the AppServer Proxy.
Com.corel.pdx.appserverprx.LogCalls=[true|false]
com.corel.pdx.appserverprx.LogCalls=true

Name of the SessionMgr Object residing

in the AppServer.

This is the object that would be exposed

to the client
com.corel.pdx.appserverprx.SessionMgrName=SessionMgr

Registry port for the Local Registry
default value = 1099
com.corel.pdx.appserverprx.RegPort=1099

Ports Used

port used by AppServer proxy objects
default value = 1100
com.corel.pdx.appserverprx.AppSrvPort1=1100

port used by AppServer proxy objects

default value = 1101
com.corel.pdx.appserverprx.AppSrvPort2=1101

JDBC Proxy Server 27

How the Utilities Work
Together

There are a number of scenarios describing how the jPdox Web Utilities can
work together to provide users with an Internet or intranet solution. The
following examples provide a brief overview.

Case I: Enterprise

In the first situation, a developer has created a form using Paradox Web Form
Designer on the developer machine, and has published the form to HTML.
The developer wants the form to be available on the company intranet,
where employees can view and edit current data from a Paradox database.
This situation requires the following components:

System (Platform) Installed Components
Developer Machine (any) Paradox Web Form Designer
Cient Machine (ary) o enabled Web Browser
Web Serve Machine (ary) Web Server (which supports JOK 12), JOBC Prory Server

Database Server Machine (Windows) Paradox 9 (with Borland Database Engine), and Paradox |DBC Server

The dynamic form created by the developer with Paradox Web Form
Designer is saved as an applet and is stored on the Web server machine.
When the client runs the applet, the components interact with the Paradox
JDBC Server through the JDBC Proxy Server (on the Web server machine).
The JDBC Proxy Server transparently coordinates incoming requests from

How the Utilities Work Together 29

Case 2:

Case 3:

30

clients and responses from the Paradox JDBC Server. The information from
the database server machine passes through the JDBC Proxy Server and the
form is displayed on the client machine. When the user enters new data, the
JDBC Proxy Server directs the information back to the database server
machine and updates the database.

Small Business

In the second situation, a company wants to gather information from people
who are visiting their external Web site. This situation requires the following
components:

System (Platform) Installed Components
Developer Machine (Windows) Paradox Web Form Designer
Web Server machine (Windows) Paradox 9 (with Borland Database Engine), Web Server (which supports

DK 1.2), and Paradox |DBC Server

Client Machine (any) Java enabled Web Browser

The developer creates a simple data entry form and publishes it to HTML.
The form is stored on the Web server machine, which is accessed by visitors
who are viewing the company’s external Web site. When the visitor enter
their personal information into the Web form, the JDBC Server receives the
information and stores it in the Paradox database.

Customer Service

In the third situation, the customer service department has a database of all
current products and pricing. They would like to provide this information to
their clients via their company Web site. However, this information is
constantly changing and provides a dynamic publishing solution. This
situation requires the following components:

System (Platform) Installed Components

Developer Machine (Windows) Paradox 9 (with Borland Database Engine) and Report Server
GientMachine (any) Jovaenabled Web Browser
Web Server macine (ary) Web Servr (whichsupportsJOK 1.2), ReportServie, and Jlun

The designer from the customer service department publishes a report
dynamically using the HTML Report Expert in Paradox, which is saved in
the Web repository on the developer machine. The client accesses the report
from the company Web site on the Web server which dynamically retrieves
the current information from the database.

jPdox Web Utilities: Chapter 8

Case 4: Advanced Java Developer

In the fourth situation, a developer is writing an inventory control application
for the Java platform (using the Java Development Kit). The inventory
control information is stored in a Paradox database. This situation requires
the following components:

System (Platform) Installed Components
Developer Machine (Windows) Borland Database Engine, Java Development Kit, and JDBC Server
(lient Machine (any) Java Runtime Environment and the Inventory Control Application (with

JDBC Client embedded)

When the Client runs the Inventory Control Java Application, the JDBC
Client talks to the JDBC Server on the developer machine, which processes
requests for data from the database (BDE).

How the Utilities Work Together 3l

Appendix

Unsupported JDBC Class methods

PreparedStatement() methods

AddBatch()

getMetaData()

setArray()

setBlob(int 1, Blob x)

setCharacterStream(int parameterIndex, Reader reader, int length)
setClob(int 1, Clob x)

setDate(int parameterIndex, Date x, Calendar cal)

setNull(int paramIndex, int sqlType, String typeName)
setRef(int 1, Ref x)

setTime(int parameterIndex, Time x, Calendar cal)
setTimeStamp(int parameterIndex, Timestamp x, Calendar cal)

Statement() methods

addBatch(String sql)
clearBatch()

executeBatch()
getFetchDirection()
getFetchSize()
getMaxFieldSize()
getMoreResults()
getQueryTimeout()
getResultSetConcurrency()
getResultSetType()
setCursorName(String name)
setEscapeProcessing(boolean enable)
setFetchDirection(int Direction)
setFetchSize(int rows)
setMaxFieldSize(int max)
setMaxRows(int max)
setQueryTimeout(int seconds)

Appendix A 33

ResultSet() methods

DeleteRow()

getArray(*)

getBlob(*)

getCharacterStream(*)

getClob(*)

getFetchDirection()

getFetchSize()

insertRow()

isLast()

moveToCurrentRow()

moveTolnsertRow()

setFetchDirection()

setFetchSize()

updateXXX(*)

getConcurrency()

getCursorName()

getRef(*)

getStatement()

refreshRow()

cancelRowUpdates()

getBigDecimal(int columnIndex)
getBigDecimal(String columnName)
getDate(int columnIndex, Calendar cal)
getDate(String columnName, Calendar cal)
getObject(int 1, Map map)

getObject(String colName, Map map)
getTime(int columnIndex, Calendar cal)
getTime(String columnName, Calendar cal)
getTimestamp(int columnIndex, Calendar cal)
getTimestamp(String columnName, Calendar cal)

ResultSetMetaData() methods

getColumnClassName(int column)
getColumnDisplaySize(int column)
getColumnTypeName(int column)
getSchemaName(int column)
getTableName(int column)
isAutoIncrement(int column)
1sCaseSensitive(int column)
isDefinitelyWritable(int column)
isNullable(int column)
isReadOnly(int column)

34 jPdox Web Utilities: Appendix A

isSearchable(int column)
1sSigned(int column)
isWritable(int column)

kf/}” e The Borland Database Engine (BDE) offers only limited support for
PreparedStatements, including the following:

* Sub-queries in comparison expressions are not supported by
PreparedStatement().

e Sub-queries in ‘EXISTS’ expressions are not supported by
PreparedStatement().

* Sub-queries in ‘IN’ expressions are not supported by
PreparedStatement().

* Sub-queries in quantified expressions are not supported by
PreparedStatement().

e (Correlated subqueries are not supported by PreparedStatement().
¢ The Paradox JDBC Driver does not support CallableStatements.
e Concatenations between null and non-null values are not null.

e The Paradox JDBC Driver is not fully Sun JDBC compliant.

Appendix A 35

Appendix

Example of Paradox JDBC Client Class

The following is an example of a class that uses a java.sql.Statement object to
query a Paradox database

import java.sql.*;

/YOU MUST INCLUDE THE FOLLOWING LINE--IT INCLUDES THE
//DRIVER.

import com.corel.pdx.driver.*;

class Example

{

public static void main (String args[])

{
// THE FOLLOWING LINE IS THE URL

String url = "jdbc:bdea://georgec_95/Sample;SM =SessionMgr;
RemoteDbUser=tester;PwdList=pdx";

//Sample Queries
String query = "SELECT * FROM lineitem";

//NOTE: Column names with spaces that appear in a query String must be
//enclosed in backslashes. For example: \"My Column\"

//String query = "SELECT t.\"Order No\", t.\"Stock No\" FROM lineitem t";

try

{
//YOU MUST INCLUDE THE FOLLOWING LINE--IT LOADS THE JDBC
//DRIVER

Class.forName ("com.corel.pdx.driver.PdxJDBCDriver");

//establish a connection to the server
Connection con = DriverManager.getConnection (url);

// Create a Statement object so we can submit SQL statements to the driver
Statement stmt = con.createStatement();

Appendix B 37

// Submit our query, creating a ResultSet object
ResultSet rs = stmt.executeQuery(query);

// DISPLAY ALL COLUMNS AND ROWS FROM THE RESULTSET
//To get info from the resultset, you must use a ResultSet class getxxx()
//method.

//To query other tables from Sample, you must setup a

//getxxx() method for each column of the other table.

//The following getxxx() methods will only display

//resultsets from the lineitem table

while (rs.next())

{

//load resultset data into java primitive types

double numb = rs.getDouble("Order No");

double stock = rs.getDouble("StockNo");

double price = rs.getDouble("Selling Price");

double qty = rs.getDouble("Qty");

double total = rs.getDouble("Total");

//Print the results to the screen

System.out.println(numb + "" + stock + "" + price + "" + qty + " " +
total);

}
// Close the result set

rs.close();
// Close the statement
stmt.close();

// Close the connection
con.close();
}
//CATCH ERRORS
catch (SQLException ex)
{

// An SQLException was generated. Catch it and
// display the error information. Note that there
// could be multiple error objects chained together

jPdox Web Utilities: Appendix B

System.out.println ("\n*** SQLException caught ***\n");

while (ex != null)
{
System.out.println ("SQLState: " + ex.getSQLState ());
System.out.println ("Message: " + ex.getMessage ());
System.out.println ("Vendor: " + ex.getErrorCode ());
System.out.println ("");
ex.printStackTrace ();
ex = ex.getNextException ();
System.out.println ("");
b
b
catch (java.lang.Exception ex)
{
// Got some other type of exception. Dump it.
System.out.println("Lang Exception");
ex.printStackTrace ();
b
b
b

Appendix B 39

Index
A

alias

API-compatible
appsrv.properties .
appsrvprx.properties .

B

BDE. .
BDE 5.01

Borland Database Engine .

C

Class.forName .
(lasspath .
configuring
appsrvprx.properties
JRun Administration .
lease time .
log file .
Paradox JDBC Server
port information
Session Manager .
configuring
JDBC Proxy Server .
Corel Web Server.

D

default logging .

dynamic HTML document .

dynamic publishing.
dynpub.jar .

E

editing
properties file .

F

forms

12-13
26

H

HTML Report Expert
HTML Table Expert .

I

import line .
install

jPdox Web Utilities .

install components .

install folder.

InstallAnywhere .
introduction .

installation .

Internet

intranet.

J

Java applets .

Java application

Java Classpath .
Java Servlet.

Java Servlet

Java Servlet API.
Java Virtual Machine.

Java-based Web forms .

JavaBeans .
JavaSoft |RE .
JDBC Client .
JDBC Proxy Server .
introduction .
JDBC Server.
JDBCURL .
JDKI2 .
jPdox Web Utilities
case examples .
JREI2
JRun
introduction .
JRun administration

JRun Service Manager .

.

Index

L

lease time .
license .
License Agreement
jPdox Web Utilities .
log file .
log file path.

M

multithreaded .

P

Paradox 9 .
Paradox database .

Paradox Java Database Connectivity

introduction .
Paradox JDBC Client Class
example .
Paradox |DBC Driver
Paradox Report Server .
introduction .
Paradox Report Server .
Paradox Web Form Designer .
introduction .
PdxJDBC.jar
port information .
PreparedStatement() methods
publish to HTML
forms.
reports .
tables

R

Registry Port .

registry ports .

Remote Method Invocation .
ResultSet() methods
ResultSetMetaData() methods .
14|

RMI registry

S

servlet runner .

Index

servlet runner administration .
Session Manager

JDBC server .
SessionMgr .
SessionMgrName
setup .
jPdox Web Utilities .
shortcut location

jPdox Web Utilities .
Statement() methods .
static HTML document .
static publishing
Structured Query Language

T

three-tier Web solution .
two-tier Web solution .

U

Unsupported JDBC Class methods .

A

Web forms .
WYSIWYG

33

	Table of Contents
	Chapter 1 jPdox Web Utilities 1
	In tro duc tion 1
	jPdox Web Util ities setup 1
	Tech ni cal Sup port and Ser vices 1
	jPdox Web Util ities 2

	Chapter 2 jPdox Web Util ities setup 3
	Step One: In tro duc tion 3
	Step Two: Li cense Agree ment 4
	Step Three: Choose In stall Folder 4
	Step Four: Choose Short cut Lo ca tion 5
	Step Five: Choose Java Vir tual Ma chine 5
	Step Six: Choose In stall Set 6
	Step Seven: In stalling 7
	Step Eight: In stall Com plete 8

	Chapter 3 Par a dox Web Form De signer 9
	Chapter 4 Par a dox JDBC Driver 11
	How the Par a dox JDBC Driver works 11
	Con fig uring the Par a dox JDBC Server 12
	Using the Par a dox JDBC Driver in Java ap pli ca tions 14

	Chapter 5 Par a dox Re port Server 15
	Dy namic HTML doc u ments 16

	Chapter 6 Par a dox Re port Server and JRun 17
	Set ting up the Par a dox Re port Server 18
	Con fig uring your de fault port 18
	Two-tier Web So lu tion 19
	Testing the two-tier Web so lu tion 20

	Three-tier Web So lu tion 21
	Testing the three-tier Web so lu tion 22

	Chapter 7 JDBC Proxy Server 25
	Con fig uring the JDBC Proxy Server 25

	Chapter 8 How the Util ities Work To gether 29
	Case I: En ter prise 29
	Case 2: Small Busi ness 30
	Case 3: Cus tomer Ser vice 30
	Case 4: Ad vanced Java De vel oper 31

	Appendix A: Un sup ported JDBC Class meth ods 33
	Appendix B: Ex am ple of Par a dox JDBC Cli ent Class 37

	Index
	A
	alias 11
	API-compatible 17
	appsrv.properties 12 - 13
	appsrvprx.properties 26

	B
	BDE 11
	BDE 5.01 11
	Borland Database Engine 11

	C
	Class.forName 14
	Classpath 14
	configuring
	appsrvprx.properties 26
	JRun Administration 19, 21
	lease time 13
	log file 13
	Paradox JDBC Server 12 - 13
	port information 12
	Session Manager 12

	configuring
	JDBC Proxy Server 25

	Corel Web Server 2, 15

	D
	default logging 12
	dynamic HTML document 15
	dynamic publishing 15
	dynpub.jar 19

	E
	editing
	properties file 12

	F
	forms 9

	H
	HTML Report Expert 16
	HTML Table Expert 16

	I
	import line 14
	install
	jPdox Web Utilities 3

	install components 6
	install folder 4
	InstallAnywhere 3
	introduction 1

	installation 3
	Internet 15
	intranet 15

	J
	Java applets 9
	Java application 14
	Java Classpath 19
	Java Servlet 16
	Java Servlet 17
	Java Servlet API 15
	Java Virtual Machine 5
	Java-based Web forms 9
	JavaBeans 9
	JavaSoft JRE 5
	JDBC Client 11, 25
	JDBC Proxy Server 25
	introduction 2

	JDBC Server 11, 25
	JDBC URL 14
	JDK1.2 5
	jPdox Web Utilities
	case examples 29

	JRE1.2 5
	JRun 16
	introduction 2

	JRun administration 18
	JRun Service Manager 19
	JVM 5

	L
	lease time 12 - 13
	license 4
	License Agreement
	jPdox Web Utilities 4

	log file 13
	log file path 12

	M
	multithreaded 2

	P
	Paradox 9 15
	Paradox database 16
	Paradox Java Database Connectivity
	introduction 2

	Paradox JDBC Client Class
	example 37

	Paradox JDBC Driver 11
	Paradox Report Server 17
	introduction 2

	Paradox Report Server 15
	Paradox Web Form Designer 9
	introduction 2

	PdxJDBC.jar 14
	port information 12
	PreparedStatement() methods 33
	publish to HTML
	forms 9
	reports 15
	tables 15

	R
	Registry Port 26
	registry ports 12
	Remote Method Invocation 12
	ResultSet() methods 34
	ResultSetMetaData() methods 34
	RMI 12
	RMI registry 12

	S
	servlet runner 17
	servlet runner administration 18
	Session Manager 12
	JDBC server 12

	SessionMgr 12
	SessionMgrName 26
	setup 3
	jPdox Web Utilities 3, 5, 7

	shortcut location
	jPdox Web Utilities 5

	Statement() methods 33
	static HTML document 15
	static publishing 15
	Structured Query Language 11

	T
	three-tier Web solution 21
	two-tier Web solution 19

	U
	Unsupported JDBC Class methods 33

	W
	Web forms 9
	WYSIWYG 9

